Learning Deep Convolutional Networks for Demosaicing

نویسندگان

  • Nai-Sheng Syu
  • Yu-Sheng Chen
  • Yung-Yu Chuang
چکیده

This paper presents a comprehensive study of applying the convolutional neural network (CNN) to solving the demosaicing problem. The paper presents two CNN models that learn end-to-end mappings between the mosaic samples and the original image patches with full information. In the case the Bayer color filter array (CFA) is used, an evaluation on popular benchmarks confirms that the data-driven, automatically learned features by the CNN models are very effective and our best proposed CNN model outperforms the current state-of-the-art algorithms. Experiments show that the proposed CNN models can perform equally well in both the sRGB space and the linear space. It is also demonstrated that the CNN model can perform joint denoising and demosaicing. The CNN model is very flexible and can be easily adopted for demosaicing with any CFA design. We train CNN models for demosaicing with three different CFAs and obtain better results than existing methods. With the great flexibility to be coupled with any CFA, we present the first data-driven joint optimization of the CFA design and the demosaicing method using CNN. Experiments show that the combination of the automatically discovered CFA pattern and the automatically devised demosaicing method outperforms other patterns and demosaicing methods. Visual comparisons confirm that the proposed methods reduce more visual artifacts. Finally, we show that the CNN model is also effective for the more general demosaicing problem with spatially varying exposure and color and can be used for taking images of higher dynamic ranges with a single shot. The proposed models and the thorough experiments together demonstrate that CNN is an effective and versatile tool for solving the demosaicing problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Deep Learning Approach for Image Denoising and Image Demosaicing

Color image normally contain of three main colors at the each pixel, but the digital cameras capture only one color at each pixel using color filter array (CFA). While through capturing in color image, some noise/artifacts is added. So, the both demosaicing and de-noising are the first essential task in digital camera. Here, both the technique can be solve sequentially and independently. A conv...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.03769  شماره 

صفحات  -

تاریخ انتشار 2018